GLOSSARY

Little Algebras

	Operator symbol for "necessity"				
	see modal logic, necessary, possibility				
\					
~	Operator symbol for "it is possible that"				
	see also modal logic, necessary, possibility				
abstract algebra ₁	A branch of meta-mathematics				
abstract algebra ₂	A set (the <i>domain of discourse</i>) with operations (the <i>signature</i>) on that set. Often there are constants, axioms, and functions. There are no <i>relations</i> employed in a traditional algebra. The logic is deductive logic <i>only</i> , and the statements are <i>declarative</i> . Algebraic formulae are translated (in part) to procedures within the calculus so that useful work may be performed (i.e., finding the values that satisfy). Issues, such as decidability, are not interesting in a calculus; the formula is presumed satisfiable (i.e., that it is true for some values) and focuses on finding the values. Unsatisfiable formulae are treated as exceptional cases.				
	see algebraic structure, calculus, Chomsky hierarchy, compile, domain of discourse, interpretation function, language, model theory, numerical methods, signature, valuation function.				
accessible	If world A can lead to world B				
	see also conversational background, propositional attitude, states of world				
accessibility relation	A function that is true if world A can lead to world B.				
,	See also propositional attitude				
algebraic	An abstract algebra or the list of the major elements that make up an abstract algebra.				
structure	see abstract algebra				
ambiguity referential ambiguity	Uncertainty about which of a word's or expression's possible meanings is the one intended. An expression of reference can be interpreted as designating more than one thing. Can be semantic structure (e.g. "every man loves exactly one woman").				
	See also diaphoric, vague				
fallacy of	Treating two distinct meanings of a word as though they were the same.				
equivocation anonymous	There is not a name (or designator) for the item, relationship, etc.				
arguments	First kind: objects				
kind	Second kind: first-level functions of one argument				
	Third kind: first-level functions of two arguments				
	č				

COPYRIGHTRANDALL MAAS, 2005-2010FILEG:\My Documents\Glossary\Little Algebras;8.docx

ATN's	Bill Woods BBN, IBM=Stan Petrick		wledge system. LUNAR system.	<i>Terry Winograd,</i> The Blocks World		
	ATNS: "Too pow	erful" – costly in terms of me	nory. Generate too much output.	John Kimbal, Lyn Frazier, Janet Dean, Fodor.		
	Seems little differ	Seems little different from shift-reduce parsers				
	See also parsers					
parts	Hold Stack					
	Lexicon (table of	word and properties)				
	Register					
	Active stack					
	History stack.					
	Everytime the stat	ck is indeterminant:				
	• Record all re	levant information and				
	• Push it onto t	he stack				
standard conditions:	Push X: Invoke th	ne X network				
arc labels	Cat X: Check the	lexicon t see if word is of cate	gory X			
	Jump					
standard actions	Hold, retrieve	•				
	Attachment of a new daughter subtree to the top of the stack					
	Name for jump					
	Non-standard condition: standard condition and user defined					
	Nonstandard actio	on.				
attribute	'Characteristics, qualities, or performance parameters of alternatives' whereby an item can be distinguished. An attribute is essential: all members of a class must have the attribute. This allows classes to be distinguished.					
	See also property,	quality				
axiomatic	Starts with:					
development	 Undefined terms 					
	Undefined relationships					
	 Axioms relating the undefined terms and the undefined relationships 					
	 Development 	nt of theorems based upon axi	oms and the definitions			
basis		re 'axiomatic' functions and o onal ones, are defined in term	perations in a language. Other funct s of these.	ions,		
belief context	They seldom intro		are an important case in intensional s linking relation. Belief contexts prin			
	Context #	Relation Name	Definitions	Table 1: Belief Context		
	1	loves	see loves ¹ () below			
	1	likes	see likes ¹ ()			
	1	knows	see knows ¹ ()			

...

2 2 2	loves likes knows	see loves ² () see likes ² () see knows ² ()	
param₁		param _n	Table 2: loves ¹ ()

Similar for likes¹(), knows¹(), likes²(), etc. believes Believes is a context for interpreting the concept. Set of different belief contexts. Few algebra's of meta logic discuss or are interested in belief. Trust network adds signatures by others to the <property id, value> pair, and/or a level of certainty. The trust function (metrics) are built on this. See also propositional attitude bill of materials Bill of materials . problem . Product mix Quantity on hand (stock) . Quantity to buy from suppliers. Suppliers offer different price points. Suppliers differ in min/max quantities, identifying suppliers, services agreements. Query: Select ItemId, Qty from B BOM, P Projects where B . projectID == P . projected Update from PO, P1 Qty = (select Qty from BOM B where B . projectId = P1 . projected && B . itemId = P1 . itemId) binding The sense of a symbol having an assigned value. bound Symbol has a precise value free Symbol is without value. Büchi automaton A state machine, similar to a finite state machine, which can take infinite inputs; it includes a set of initial states and a set of good states. (They are also like Kripke structures, but interpreted slightly differently). They are used in model (or protocol) checking to say that some action will eventually be taken after event y (to find cases where this doesn't happen), or that action x will never occur after the event. See also bounded model checking, Kripke structure, model checking, temporal logic (linear) can see capability capability Table 3: Different forms of capability/possibility term capability ability can

capability

ability

could

	-	did, do, does may must shall should will would	permission possibility obligation obligation obligation obligation possibility	emphatic intension	
causality	the fo	ollowing counterf	actual and subjunctive co		nizes
	•	if A should hap	pen then B must happen		
characteristic function			eating a set as a function bedagogical example is be	. Usually this is used where everything a freese represented as a set.	unction
choice machine	Uses	interactive choic	es as a form of computat	ion.	
	see a	lso <i>oracle machii</i>	nes, unorganized machin	es, universal computation machine.	
Chaitin constant	Thor	robability of bal	ting. This value, ironical	ly is not computable	
Ω		-	C	ity, is not computable.	
	see a	lso Halting probl	em		
Chomsky hierarchy	ones, synta into t study	In mathematics literature syntax can be processed by the type above it. Syntaxes, other than regular thes, allow a production to refer to itself (this recursion is different than the recursive ntax type). The automaton (FSM) is equivalent to the syntax: each can be converted to the other. Each type of automaton has proved to be a distinct specialized area of idy. e also parsing, syntax, regular expression Table 4: Chomsky hierarce			
-	Type	Language	Minimal automaton	Production restrictions	_
-	Type	Language			_
	0	recursively enumerated	Universal computing machine	None	
	0	recursively enumerated recursive	machine Decidable universal	None	
	0	enumerated	machine	None Each production rule has atleast as many symbols on the right side as the	
		enumerated recursive context-	machine Decidable universal computing machine Linear bounded,	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production.	
	1	enumerated recursive context- sensitive	machine Decidable universal computing machine Linear bounded, NFA	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side	
-	1 2	enumerated recursive context- sensitive context-free	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal	
closed formula	1 2	enumerated recursive context- sensitive context-free	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal	
closed formula	1 2	enumerated recursive context- sensitive context-free regular	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA Finite	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal	
	1 2	enumerated recursive context- sensitive context-free regular aka <i>sentence</i> see <i>formula (cl</i>	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA Finite	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal and/or a single terminal on the right.	
closed formula closed world assumption	1 2	enumerated recursive context- sensitive context-free regular aka <i>sentence</i> see <i>formula (cl</i> Assumes that e	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA Finite	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal	
closed world	1 2	enumerated recursive context- sensitive context-free regular aka <i>sentence</i> see <i>formula (cl</i>	machine Decidable universal computing machine Linear bounded, NFA Pushdown NFA Finite	None Each production rule has atleast as many symbols on the right side as the left. Example: a ⁿ b ⁿ c ⁿ Only non-terminal symbols on left side of each production. Example: a ⁿ b ⁿ Every rule has a single non-terminal on left and at most a single non-terminal and/or a single terminal on the right.	

complete	complete in the sense t they are false.	hat if a set of statements is unsatisfiable, it is possible to de	cide		
	see also satisfiable, sou	indess			
completeness	This is very sensitive to	statements in the language be evaluated (as either true or fa o the given axioms, and what statements are admitted. A re e in all models of a theory?			
	see incompleteness the	orem			
compositionality	the elements, their mod	ture, phrase or formula is a function of the meaning of le of combination, and the context. Decomposition is inding such a structuring.			
`consistent with'	The hypothesis does no from the axioms.	ot contradict the axioms rules; it may or may not derive			
constraints	Controls the range of p assigned.	otential values to which a symbol (variable) may be			
over-constrained		nstraints, making it possible to satisfy them all. There ion for such a problem, but there can solutions that are			
conversational	The accessibility relation	ons can be determined from this. Includes:	Angelika Kratzer		
backgrounds	• A set of propositions				
	Accessibility relation				
	• Set of worlds	accessible from a particular world			
	Time of speech, time	of event, reference time.			
modal base	The conversational back	kground that determines the set of accessible worlds			
ordering source	A conversational backg	round used to determine a partial ordering or worlds.			
correspondence theory	See Truth				
counterfactual		nents ('if X had been the case, so would Y'); intensional o handle counterfactuals by employing similar worlds.			
		be the case. Both A and B are true in all worlds that picks worlds, based on this one, with a high probability			
	see also possible world.	s, subjunctive conditional, tense			
counterfactual	Modal auxiliaries, mod	al adverbs, propositional attitudes, habituals, generics			
conditionals	See also modality				
	Modal auxiliary	It may be raining outside.	Table 5: Distinction between		
	Modal adverb	It is possible that it may rain tomorrow.	types of counterfactual conditions		
	Proposition	Alice believes it is raining outside.	-		
	Habitual	Bob drinks.			
	Generic	Coffee is bitter.			

counterfactual historians	"Robert Fogel in his 1962 classic <i>Railroads and American Economic Growth</i> – who won the 1993 Noble in economic science – revolutionized economic history by posing counterfactuals and assembling data to statistically test the narratives [frequently put forth]." Counterfactual historians use simulations and game theory to evaluate the necessity and possibilities posed by past events – esp. among WWII re-creationists. ¹
counter part	Opposite of a rigid designator, people are slightly different at each time, place and possible world.
covering	A logical proposition or a set of propositions <i>covers</i> an event or logical hypothesis if the later are the logical outcome of the propositions or can otherwise be deduced from them.
crossworld identity problem	A problem in possible worlds, where one has to decide who in world B is the same as a given person in world A. This problem is avoided if you use a rigid designator, or kept tractable if you take care with counter parts.
	see also counterparts, rigid designator
decidability	Do we have a systematic method of evaluating a statement – determining if it is true or false?
	see also decision procedure, Entscheidungsproblem, Halting problem
decision procedure	A stepwise method to decide if a given statement is true or false.
	see also evaluation procedure, valuation function
de dicto	See <u>diaphoric</u>
de re	See <u>diaphoric</u>
de se	See <u>diaphoric</u>
definitions hierarchical	Hierarchical definitions (e.g. Genus & Species) organize the senses of meaning in such a way that shared properties can be represented concisely.
dense	In dense domains, given any two non-identical items, there is always an infinite number of items between them. Methods of deduction differ for dense domains (such as real numbers) from sparse domains (such as discrete sets).
denotational semantics	Semantics of computer programs, discussed in a ponderous manner.
deontic logic	Deontic logic is a specific type of moral logic, limited to topics of rights and responsibilities. The logic is composed of subjective and counterfactual conditions: obligation and permission; ought and may. Deny, allow, permit. Information security is interested in <i>users, objects, actions,</i> and <i>media/channel –</i> and relations based upon those.
	see also modal logic
designator	There are different things meant by designator intension, or extension (set of items
rigid designator	rigid designators refer to the same entity in every possible world.
diagnosis	An application of declarative systems, depending on decision trees, examining symptoms, forming and ranking hypothesis. This works well for small systems,

 $^{^{1}\} http://www.wired.com/gaming/virtualworlds/commentary/games/2007/05/gamefrontiers_0521$

		h large #'s of components and large numbers of a large set of observations – a problem of combinatorial	
model based		ative description of normal behaviour, looks for a distinction een current behaviour. Consistency-based diagnosis is a	
diaphoric	Distinctions in the i	ntensional reading of a statement	
de dicto	Translates "Miss Ar	nerica has always been blonde" into:	
	$\forall_x MissAmerica(x) \land$	Blonde(x)	
de re	Translates "Miss Ar	nerica has always been blonde" into:	
	MissAmerica(x,now)	$\wedge \forall_{t} Blonde(x,t)$	
de se	Peter see a picture o Peter.	f man and thinks the man is handsome; the pictured man is	
de signo	Value range		
disambiguation		ng several words with the same meaning, or a word with ossible based on sense)	
dual	Symmetric logic rela	ations	
entailment	B entails C when bo	th encode the same information, possibly very differently.	
Entscheidungs- problem	statement is true. The to invalidate your pr	<i>coblem</i> – a question of whether or not one can decide if a ne Halting problem, where a machine changes what it does ediction (decision), is the classic proof. Most problems are those that are can be prevented by not allowing such wn to the system.	
	see also Halting pro	blem	
equation	See also expression, situations	function, interpretation, model, propositions, sentences,	
	equation	A relation between two expression	Table 6: distinction between expression
	expression	Doesn't have a relational comparison	expression
	function	Assigns unique value to each input	
	interpretation	Assigns intention	
	model	Assigns extension	
	proposition	Set of situations	
	sentence	Denotes proposition(s)	
	situation	Part of world	
evaluation procedure	given statement is th		
	see also intermediar	y language reduction procedure, valuation function	
explanation of facts principled		merge from a tightly interconnected system of general ch lead to further predictions about as yet undiscovered	

expression	See equation			
extensible language	"A base language which provides a complete but minimal set of primitive. Facilities, such as elementary data types, and simple operations and control constants.			
	"Extension mechanisms which allow the definition of new language features in terms of the base language primitives.			
	Semantic extensions: introduce new kinds of objects, data types			
	Syntactic extensions. New notations for existing or user defined mechanisms.			
extension	The set of items referred to by a variable or phrase, or that satisfy a sentence or phrase's logical specifications.			
	see also intension			
extensional value	True/false, quantity or set when the statement (formulae) is evaluated against a specific world, and other context dummy variables.			
	See also conversational background			
falsifiability	Karl Popper's idea that theories should produce verifiable statements – experiments could decide if the statement is true of false – as a form of negative feedback in the scientific process. Popper argued that knowledge increases as people over-predict and fall back upon falsification,			
	see also observability, pragmatics, strength, verificationist			
form canonical	Written in the most standard, conventional, logical way. The rules & process is called <i>canonicalization</i>			
normal form	A simplified form (where otherwise many are possible) that allows some method to be applied. The process is called <i>normalization</i>			
prenex normal form	Strings of quantifiers followed by a quantifier-free portion			
formal semantics	Referent, extensions, intension,			
formal system characterizing precisely	 Syntax streamlining An arithmetization method (e.g. Gödel numbering) A definite method of going back and forth between the arithmetic number coding and conventional notation To make tractable assign id # to the objects of your attention: each symbol, string, well-formed formula, finite chain of those, proof, etc. get such a number 			
	such a number			
formula closed	All of the variables are bound – if not as parameters or constants, then by 'quantification'			
generalization	An accurate statement in precise language of what was found with respect to the tendencies, relationships, regularities or patterning among variables under study.			
Gödel number	A method for assigning statements a unique number:			
	1. Setup axioms for the predicate calculus along with a rule of inference by which one can get not formulae from old ones.			
	2. Set up axioms for standard arithmetic in the language of predicate calculus.			
	3. Define a numbering for each formula or sequence of formulae in the resulting formal system.			
	The code number for each symbol (and operator) is then computed:			
	4. A statement is treated as a string of elements (i.e. symbols and operators).			

The index of each element within the string is assigned a prime number.

- 5 Each prime corresponding to each element is raised to the power of the element's code number.
- Table 7: Gödel codex symbol Υ b m S х 7 8 9 10 code 1 2 3 4 56 11 Table 8: Gödel code formula B + m * x = y $3^{1} 5^{10} 7^{2} 11^{11} 13^{3} 17^{8}$ 2⁹ code Table 9: Gödel code (x, b) $7^4 11^8 13^6 17^{10} 19^5$ formula S = 2⁹ 3¹ 5⁷ code
- These are multiplied with each other to yield the Gödel number. 6.

Gödel theorem In any sound, consistent, formal system containing arithmetic, there are true statements that cannot be proved.

guessing When NFA's have multiple items to choose from at some stages of computation, they role of perform faster (than other methods) if they guess well; backtracking allows them to handle when they guess wrong. Oracle machines can compute, with less complexity (e.g. faster), some problems that other machines would do poorly. Most applications of these methods are guessing the intent in parsing, or solving difficult numerical problems (an application in satisfaction). One form of guessing is to try all acceptable paths at once, (but only track all states the machine may be in, rather than the path).

see also back-tracking, oracle machines, regular expression, satisfaction, witness function

halting problem A classic 'decidability' problem: Given a Turing Machine and a tape (program), decide whether the machine will halt while running that tape. If a Turing Machine or program is allowed to know the answer to that question, and it can do that opposite - if you say it will halt, it makes sure that it will not; if you say that it will run forever, it chooses to halt.

see also Entscheidungsproblem

Finds the longest recurring substring. Heckel's

algorithm See also Bentley-McIlroy matching

ILOG Tools: solver, scheduler, dispatcher, configuration

Terms: powerful, advanced, versatile, easy, clear

Application	Long-term	Published schedule	Operational Schedule	Table 10: Planning horizon
Scope	Strategic	Tactical	Operational	
Timesteps	Month	<-Week->Days->	Hour	
Drivers	Money		Feasibility	
Technique	LP	MIP/Hybrid	CP	
-		-		

incompleteness Gödel showed some systems - including sufficiently strong and consistent - will have statements that can't be evaluated. Some such or similar systems are also undecidable.

see also Entscheidungsproblem, Halting problem

'independent of' The hypothesis is not a logical outcome of the axioms - they can't be combined in a finite number of steps to generate the hypothesis. This hypothesis may or may not

	valid.
indexical terms	Terms defined by context
	See also conversational background
intension	The formula or statement as declarative logical specification. The formulae is marked against which world/time it is to be evaluated against (to extensional form).
	see also extension
intermediary language	There is some debate whether a model's interpretation should be described in terms of a machine (i.e., an evaluation procedure), or translated into a set of declarative statements that must be used by another model to infer the values. With a single model, or small number of models, it is simpler to use a direct evaluation procedure. With a large number of models, it may be easier to translate each into a more sophisticated intermediary language. This also reduces the combinatorial complexity of translating from one language to another: either you need two translators for every language (two and from the Intermediary language) or $2n^2$ translators.
	see also compiler, evaluation procedure, valuation function.
interpretation	
interpretation function	Interprets sentences in the language. The language can be very simple or complex. I'm not familiar with any past a Chomsky level 2. The language can be a non-trivial language of any form that can be systematically interpreted.
	see also evaluation procedure, intermediary language, valuation function
Kripke frame	k set of states
	i<= j relation, compatbility of these states
	values/ models
Kripke structure	A non-deterministic automata:
	• The nodes are the reachable (possible) states,
	• The edges are the operations that changed the state
	 Something that maps the state (node) to what it represents
	Checks that temporal logic formulae are valid. A counter example is a trace of the system that violates the property. State transition structure; each state is a value at time. All behaviours of the Kripke structure satisfy or violate formula.
language elements	Indexicals (items that are identified in context), determiners, quantifiers, propositional connectives
formal	Includes axioms, entities are grouped by classes. Much of the discussion of a formal language involves details of the syntax – especially what constitutes a <i>well-formed formula</i> – precluding the much larger issue of meaning and methods of evaluation.
fragment	A language fragment is employed for any of the following reasoning: for tutorial purposes (pedagogy), it is as far we got in the analysis of larger (possibly hypothetical) language, or if the language elements used to describe a problem conform to the language fragment, there may be many advantages to using the special-case.
metalanguage	Describes an object language. This is needed to define the truth notions about an object language. An object language that is allowed to 'describe' which of its

	statements are true or false will often be 'incomplete' - see the Halting problem.	
object language	In logic the language of the axioms; the language or logic under study.	
license	Fields: permits, requires, prohibits, jurisdiction, deprecation date, legal code URL.	
	Toulmin style argument	
logic problems	Logic problems tend to become very narrow and regimented into purpose, form, style and method. However, they are not very interesting.	
logicians	Logicians study structures – a set with relations and functions. "Space" is a structure, so is first order logic with equality.	
many valued	True, false, possible	
Jan Lukasiewicz	see modal logic	
map	A model that connects two models	
Markov	What can a markov table represent?	
	Regex: the old* man ate.	
	What can't they represent?	
	A::= '(' A ') Foo	
	See also <i>parsing</i>	
metadata	Metadata answers important questions about information:	Andrew Tanenbaum,
	• What do I have?	Metadata Solutions: Using Metamodels, Repositories,
	• What does it mean?	XML, and Enterprise Portals to
	• Where is it?	Generate Information on Demand, Addison-Wesley,
	• How did it get there?	Boston, 2002
	• How do I get it?	
methodology1	Pretentious way of saying 'method'	
methodology ₂	Study of methods employed	
modal logic	Concerned with constructing a logic calculus that includes the following operators:	
	BelieveBefore/after	
	 Necessary that 	
	• Will happen	
	Possibility	
	There is disagreement whether a modal logic may take on more. These operators can apply to sequences as well as episodic events. They have slightly different definitions	
	(and implications) in tense, moral, epistemological, derivation, and other contexts.	
	see also deontic logic, reference point, temporal logic, tense logic	
		Table 11: Different forms of

	'truth' analogue	Definition	Table 11: Different forms of possibility
Logical nomological	Coherence verificationist	X is possible, being allowed by a definition X is possible, being allowed by the laws of	
		nature	

nomohistorical correspondence X is possible because it doesn't violate the laws of nature, compatible with actual history

_					
	Operator	Intension		Notation	Table 12: Modal operators in more detail
	after before necessary		=1 unrelated to B: In all possible t A is true, so is B; if unrelated, it	A after B A before B A must happen when A happens so must B	-
_	possible	possible w	> ε unrelated to B: There exists a orlds where A & B; d, this merely Possible(B)	A can happen when A happens so may B	-
modal system	worlds mig	ght correspond	anguage, a set of worlds, and a means of d to alternative outcomes for choices (th beliefs, tableau of facts, etc.		
	see also me	odel world			
	Туре		Distinction		Table 13: Distinction between types of modality
	ability				types of modulity
	alephic n	nodality	Necessary, possible; if it is necessary	must be possible	
	circumsta dynamic	antial /			
	deontic		Permissible, obligatory		
	epistemic	e modality	knows, believes		
	temporal	modality	always, sometimes		
model1	A binding	of variables to	o values. See also satisfaction		
model finder			e, finds the bindings of variables (the mo a constraint solver (compile and hand to		
modeling languag	e Expresses	Expresses structure constraints and behaviour			
model ₂	features of considerati	a complex sy	using a few central relationships to represent; models discard important element <i>not</i> truth. Models are often described by error.	ts and philosophical	Models are "clipped and pruned till they resemble the conventional birds and animals of decorative art." Alfred Marshall.
	must have transparen It should b	a concrete for t about its con be easy to tinke	about the underlying theoretical principl rm in definite algebraic terms. The mod inections, mechanisms, and flow, coupli er with, yet the user should not have to u hereto fore) unseen expectations?	el should be ng effects to outputs.	
	see endoge	enous variable	es, functional explanation, Markov mode	el, Poisson model	
	Term	D	istinction		Table 14: Distinction between related terms

emulation	Imitates the behaviour of a system, without concern for internal processes
evaluation	To assign a value to an expression
execution	A sequence of instruction passed to an external interpreter
interpretation	Assigns interpretation.
model	Assigns extensions – the values and sets
paravirtualization	Similar to virtualization, except it presents the illusion of a device slightly different from the underlying hardware.
simulation	Mimics the behaviour of a system, with a high degree of fidelity to internal processes, state, etc.
virtualization	Effects the illusion of each user of a device being the only user; the multiplexing software typically saves and restores the state context for each user.

Type Distinction		Table 15: Distinction between _ types of models
analogical models		
behavioral	Imitates the behaviour of a system, with-out concern for internal processes	
declarative models	can represent important aspects of static systems, but dynamic systems are largely beyond their ability. Most tense analysis in modal systems treat histories as points in time with different sets of facts, ignoring change.	
idealized models		
Measurement models	Maps measurements to their theoretical constructs	
Parametric models	Predicts values, especially when observables and/or actions are primarily numerical.	
Phenomological models		
Statistical models	A type of behavioural model based on probabilities	
Structural models	Maps causal and correlative links between theoretical variables. Specifies components and interconnection, often a structural model is a specific implementation.	

Scale		Modeling technique	Table 16: Modeling techniques per scale of system
sub-atomic		Quantum theory	
atomic	group	Thermodynamics	
	individual	Mechanics	
Person	individual	Automaton	
		- Cellular automaton	
		- L-system	
		Diffusion equations	
	group	System dynamic theory	
	group	Markov / Stochastic walk	

group	Boids
groups	Network theory
	Dialasti da c

cosmos

Relativity

Circumstance	Technique	Table 17: Technique for a given circumstance
Decisions in competitive circumstance	Game strategy	
Lines	queuing	
Many others	queuing	
Minimizing costs	stock control	
Future events directly affected by preceding events	markov chains	
Attention to risk	project management	
Explore Ideas	simulation – without loss or humiliation	
Time-based events	queuing	

analytical model Set of formulae that map program characteristics, and architecture characteristics to performance characteristics. Employed to identify relative usage level of subsystems, power, etc. behavioural model Describes the system primarily using Its actions and actions of its components, • Its interaction with the outside world, • Interactions of its components, • Causality relation Describes the function and timing, independent of a specific implementation. see also functional explanation economic models Modeling economics poses a challenge since economic relations are very vague. Relationships only have a topology, but no definitive structure. (Does a rise in output, mean a small linear change, exponential, or a probability?) This means the integration of changes will be way off. The relationships may be wrong, or purely ideological; they may be correlative for a while, but the correlations may disappear once the state or other factor tries to manipulate them. Can't predict results based on the results under an old regime. Many of the elements are linked in a complex system of symbolic equations. They are not sufficiently independent or isolated to examine a subsystem; to solve one part, you need to solve all of the equations simultaneously. Easy to have results that cannot be predicted with naïve models. The messy transitions of the real world are not predicted. There are genres of economic models. Macro-economic models to demonstrate the circular flow of the economy. Computable General Equilibrium models: these focus on the underlying structure of the economy, ignoring business cycles variations. They can capture one-off difference policy but not the recurring, continuing effects.

equivalent models	It is common for many kinds of systems to find an equivalent electrical circuit, mechanical, or acoustical system. The help promote understanding of the behaviour. There are many specialized techniques that can be applied to a particular form, as well techniques to convert between the representations.Olson, H F, Dynamical Analogies, D Van Nostra 1946. This book provide great detail on electrica circuits equivalent to		
identification	Constructing a model by parts and specification	mechanical and acoustical	
limits of models	Models are not independent checks of their creators: models largely exist to codify a view. Some limits include: experts have their own incentives, there is a high demand for models, no matter their quality. Model selection and designed is to confirm the researcher's ideology, based on (in part) topological and structural changes.	systems.	
models in logic	A model represents a particular context in which a little algebra is evaluated – a system of axioms, operators, rules for combining variables and operators into formulae, a set of entities, their properties and relationships, and a specification of the language relates to those entities and relationships, constraints on what properties there are. These models allow only deductive logic.		
	see also valuation function		
non-standard	Alternative interpretations. Try to rule out those interpretations with ambiguity, although this can be hard to spot. Things other than intended may be well described by the model.		
numerical model	Numerical models provide numerical answers to policy questions.		
partial model	Only can evaluation some statements.		
physics	Series of equations of state, relationships between material bodies, and describe their movement, action, behaviour, etc. This is usually divided into parameters, expressions, functions, geometry, coordinate system, materials, analysis.		
satisfaction models	In order of increasing difficult: parameters are independent; pairwise; all pairs.		
statistical model	Combines analytical models and simulation to create a typifying trace.	Mathsoft S-Plus 2000, Guide	
	1. "Determine the variables to observe." These variables link to "the hypothesis being tested" or "the phenomena being modeled."	to Statistics Vol 1, 1999 p15	
	2. "Collect and record the data observations."		
	3. "Study graphics and summaries of the collected to data to discover and remove mistakes and to reveal low-dimensional relationships between variables.		
	4. "Choose a model describing the important relationships seen or hypothesized in the data		
	5. "Fit the model using the appropriate modeling technique		
	6. "Examine the fit through model summaries and diagnostic plots		
	7. "Repeat steps 4-6 until you are satisfied with the model"		
structured models	Means of evaluating a model's quality and characteristics.		
model checking	A method for verifying whether an implementation satisfies a design specification. The implementation is translated into a model from which a system state machine can be derived. The specification describes properties, and the checking verifies that the state-machine satisfies them.		
model structure	Moments, individuals, agents, concepts, attributes, values, predictions, beliefs		
model theory $_1$	study of formal languages and their interpretation		
model theory ₂	Concerned with making models of a theory. A theory has a model if and only if the theory is consistent. Such a model is a language with an abstract algebra to implement the semantics. An interpretation function that maps language elements to		

	constants, functions, and predicates. The description of the language is often a table with the syntax and how to evaluate predicate phrases of that syntax. The syntax: the kinds of variable (if the language is typed) and how they combine with operators and other variables. The set of entities allowed may be more than a variable – it may include more complex noun phrases, e.g. GlobalCheckFor \$var. Discussions of such models focus largely on the syntax (esp. <i>well-formed formula</i>)
	although the issues with interpreting meaning and finding satisfactory solutions is of greater importance in the long term (a language is learned 'once' but used for a long time), and more difficult.
	see archetypical language understanding, evaluation
model world	Composed of
	• A set of possible elements
	• A set of possible attribute names
	• A set of possible attribute values
	 A set of possible world states
	see also universe of discourse
monotonic logic	More predicates don't change outcome
non-monotonic logic	Where other data affects outcome, even if it is not really relevant.
Montague	It is composed of:
	 functions are the central organizing tool for phrases and words
	 events (and manifestations within time and space)
	 processes
	 states
	 properties
	 actions

what	authority	description	Table 18: Accessibility relations for propositions
adverb	Montague	f:proposition $\rightarrow t/f$	
`believes'	Montague	f:individual \times proposition \rightarrow t/f relation between individual and proposition	
determiner		quantifier on a set	
indeterminate phrase	Montague	predicate	
indexical			
individual	Montague	e st e∈E	
	Cresswell	f:world \rightarrow subworld (of the given world)	
individual concepts	Montague Cresswell	f:world \times time \rightarrow {i i is an individual} f:world \rightarrow individual	
name		{property set name ∈ property set} the of sets which name is part of	
noun (singular)		*	
noun (plural)		$\{s \mid s \text{ is an } n\}$	
noun phrase		general quantifier	
property	Montague	f:world×time →sets	
property of a noun situation type		the sets mentioned earlier for noun f:relation \times individual \rightarrow t/f	

ve	rb Montague relation
90-10	Relational databases need to pull in (IO) and consider data that is about 9 times the size of the resultant set.
necessary	It must be true; it cannot be otherwise. Defined operationally as X is true in all worlds at all times.
nomological	Criteria for determining if a deductive nomological explanation is worthy of acceptance:
	1. The explanation contains at least one law established by evidence and accepted as true.
	2. The law(s) are employed in explaining the event
	3. The sentences describing the initial conditions are true
	4. The description of the event is true
	 The event's description is a deductive consequence of the laws and initial conditions.
nondeterministic	The next state is not completely determined by the current state and symbols in memory. A set of next possible states is so determined. Backtracking is often be employed. Non-deterministic finite automata recognize the same class of languages as deterministic finite automata, but typically have fewer states than a DFA, and are faster to construct. The backtracking often slows down execution time for a NFA, so one might employ a DFA when NFA features are not needed, or to use a DFA to find likely interesting matches, then switch to a NFA.
	see also Chomsky hierarchy, deterministic
normal form	standardizes local formula into a specific format. Types of analysis (i.e. family of algorithms and measures) prefer one specific form.
clausal normal form	cnf::= disjunct cnf ::= disjunc ^ cnf disjunct ::= literal disjunct ::= (literal Y disjunct) literal ::= term literal ::= !term
disjunctive normal form	dnf::= conjunct dnf ::= conjunct \vee dnf conjunct ::= literal conjunct ::= (literal ^ dconjunct) literal ::= term literal ::= !term
notation	Often a skillful choice of reference system simplifies the work.
selecting	The choice of notation depends on:
	 The kinds of problems you're trying to solve
	 What environment you're trying to solve it in
	 With whom you're trying to solve it
	 How does the problem or task decompose into a given notation
	 How easy is the problem to solve in the framework?
	 How elegantly? Will it a reference well?
numerical	 Will it perform well? Solving questions of valuation is better with (computer) analytic rather than symbolic method. Most realistic problems can't be solved analytically. There is no

methods	single method (or a small number of methods) that both suffices and is tractable. Each potential definition substituted for a given relation name requires a different method to solve – each is a different problem. Worse, descriptions involving differential equation are even more difficult than the rest: solutions of differential equation is a large of subfield of math.	
observability	You might think that is X is not observable, is not worth talking about, or not unless it has some further level of interest. Similar observable, and seen as false, no one would talk about it.	
	see also falsifiable, pragmatics, verificationist	
oracle machine	An oracle computes a f() in finite time that the Universal Computing Machine can't do. This allows computation that a UCM can't do $-$ or tractably do. In satisfaction problems this often takes the form stochastic and probabilistic methods.	Copeland, BJ. Proudfoot, D. "Alan Turing's Forgotten ideas in Computer Science." Scientific American, April
	see also witness function	1999, V28N4. p 98-
order	Usually the number of parameters.	
	See also rank	
parsers	A parser converts a sequence into another sequence: $Output_j = Parser_{i,j} Sequence_i$	
	this involves:	
	 lexical: turning it into words and symbols 	
	 parsing based on the syntax 	
	 resolving the named variables, functions, types, and other elements 	
	 semantic actions based on matching the patterns 	
	Special cases of Parsers: Top-down: LL(k) Bottom-up: LR(k) k = the amount we need to look ahead	
	Objectives: 1. Minimize the amount we need to look ahead 2. Minimize backtracking a. # of times we ned to back track	
	b. Max depth we would back track	
	c. Average depth we would back track3. Minimize the amount of state need to keep	
	 Minimize the amount of state need to keep Minimize work parser does. Backtracking, tests. 	
	See also ATN, Chomsky hierarchy, Markov, regex, shift-reduce,	
LALR(1)	An approximation to LR(1) parsing.	Frank DeRemer, MIT PhD thesis, 1969
LR(k)	Bottom-up parser that became the definitive parsing solution (surpassing precedence methods).	Donald Knuth "On the Translation of Languages from Left to Right"
precedence	1963 Floyd: operator precedence 1966 Wirth: simple precedence	Information and Control, 8 <i>p607-639, 1965</i>
static parsing	Take piece of text, determine its structure without executing it.	
places	first kind: suitable for proper names	
kind	second-kind: names of first-level functions of one argument	
	third-kind: names of first-level functions of two arguments	

possible worlds	Interested in counterfactual and subjunctive conditionals as well as notions of causality. Possible worlds, being imaginary, are difficult to reconcile. The concern is how much else can be true in such a world. No approach is entirely satisfactory in what else might be true.			
	Structure and relationship of worlds (but not of a world). David Lewis Counterfactuals	<i>GE Hughes, MJ Creswall,</i> An Introduction to Modal Logic.		
	Method to decide if a formula is true/false	Summary: Method to decide if formula is true or false.		
	Form of empirical data. Fundamental tenet that data is stored as row & columns in tables; we treat it as accessible in terms of rows and columns			
	See also belief context, propositional attitude			
possibility	It might be the case that. Operationally defined as a world and time exists that it is true in.			
predicate	It is a phrase posited to be either true or false. It includes atleast one variable, attribute or function; it may include an operator. There is often atleast one free (unbound) variable. Not all predicates are genuine properties.			
	see also sentence			
problem solution	1. Start with users knowledge of problem			
search	2. Clear separation of constraints and combinatorial search			
	a. Discrete variables represent the primary decisions in the problem			
	b. High-level constraints represent the relationship between variables			
	c. Constraints can be combined to match the real-word's complex constraints			
	3. Generate multiple solutions quickly			
	4. Refine solutions			
procedural semantics	The operations that one is supposed to carry out (rather than merely discussions of possible facts). Meaning that a statement takes action or changes the world. Backtracking can be very expensive (by throwing 'exception'), unreliable (errors reversible only by best effort) or not possible at all (as with destructive operations).			
property1	An attribute (i.e. shared by all members of a class), often one that can be measured;			
	See also attribute, quality			
physical property	That which can be measured and observed with changing the composition or identity of a substance. Some physical properties are defined as a relation on two vectors.			
chemical property	In order to observe this property we must carry out a chemical change.			
extensive property	Depends on how much matter is being considered.			
intensive property	This measured value does not depend on how much matter is being considered.			
macroscopic property	Measurement determined directly.			
microscopic property	Measurement determined by an indirect method.			
property ₂	A function that returns, for a given situation, the set of entities that are in that state or express that features. For example, the property <i>is-asleep</i> returns the set of people asleep in a given situation. This definition is reverse of the conventional one.			
proposition				

proposition

propositional
attitudeA relation between individuals and propositions. Applies to believes, know, doubt,
regret, hope, etc.Jaakko Hintikka

See also *belief context*

Proposition	Individual	World1	World2	Table 19: Accessibility relations for propositions
believes	Bob	1	2	
believes	Bob	1	27	
knows	Bob	1	3	
knows	Sally	7	31	
Proposition	Individual	Function	Context #	Table 20: Proposition attitude
believes	Bob	believes()	2	
believes	Sally	believes()	3	
			2	
knows	Bob	knows()	3	
knows	Sally	knows()	31	
•••				

propositional Boolean operators (not, and, or, etc.) or set operators. **connectives**

puzzle

SEND+MORE=MONEY

- 'VIOLIN * 2 + VIOLA == TRIO + SONATA',
- 'SEND + A + TAD + MORE == MONEY',
- 'ZEROES + ONES == BINARY',
- 'DCLIZ + DLXVI == MCCXXV',
- 'COUPLE + COUPLE == QUARTET',
- 'FISH + N + CHIPS == SUPPER',
- 'SATURN + URANUS + NEPTUNE + PLUTO == PLANETS',
- 'EARTH + AIR + FIRE + WATER == NATURE',
- ('AN + ACCELERATING + INFERENTIAL + ENGINEERING + TALE + ' +
- 'ELITE + GRANT + FEE + ET + CETERA == ARTIFICIAL + INTELLIGENCE'),
- 'TWO * TWO == SQUARE',
- 'HIP * HIP == HURRAY',
- 'PI * R ** 2 == AREA'.
- 'NORTH / SOUTH == EAST / WEST',
- 'NAUGHT ** 2 == ZERO ** 3',
- 'I + THINK + IT + BE + THINE == INDEED',
- 'DO + YOU + FEEL == LUCKY',
- 'NOW + WE + KNOW + THE == TRUTH',
- 'SORRY + TO + BE + A + PARTY == POOPER',
- 'SORRY + TO + BUST + YOUR == BUBBLE',
- 'STEEL + BELTED == RADIALS',
- 'ABRA + CADABRA + ABRA + CADABRA == HOUDINI',
- 'I + GUESS + THE + TRUTH == HURTS',
- 'LETS + CUT + TO + THE == CHASE'.
- 'THATS + THE + THEORY == ANYWAY',

Dudeney, Strand Magazine, 1924

quality	Distinguishing essential attribute or characteristic property.		
	See also attribute, property.		
quantifier	few, many, more than, each, almost all, etc.		
elimination	Quantifiers can be eliminated, in some circumstances, allowing easier analysis. The approach is to try to show it is equivalent to another statement, one without quantifiers. The later can be evaluated in a fixed number of steps.		
generalized	Set theoretic notation, primarily using set disjunction (and count) to verify. The quantifier is the comparison, number, and set expression (whose cardinality is examined):		
	All A are B $ A \cap B = A , A \subseteq B$		
	Some A are B $ A \cap B > 0$		
	$# A are B A \cap B = #$		
	No A are B $ A \cap B = 0$		
	Most A are B $ A \cap B \ge 0.5$		
rank	The rank of a formula is greater than or equal to the rank of each of its elements, operators, and parameters.		
	See also <i>order</i>		
reducibility	The reverse of composability, concerned with decomposing statements into observable terms.		
reduction Converts a declarative language into a procedural one.			
procedure	see also <i>compiler</i>		
reference	A symbol may refer to something (usually this must be done thru a distinct meaning).		
reference point	Used in modal logics, a formula has two clauses, both with their own modal operators. With tense logic there is often a reference time.		
see also modal logic			
regimented	Orderly separation of premises, facts, and conclusions so that conclusions are true in a stricter sense – by preventing invalid ones.		
	Truth separated into analysis outside of the language (see Halting problem)		
	Deductive vs inductive methods.		

regular expression

Two regular expressions are equivalent if they recognize the same set of strings. Regular expressions can be differentiated using a set of rules analogous to Leibniz rules of differentiation. Given a regular expression R₁, the derivative (with respect to symbol 'a') is a regular expression R2. R1 recognizes the strings matched by R2 when they are prefixed by 'a'.

See also Chomsky hierarchy, the method affine transforms for generating strings.

Table 21: Regular equivalences

	Equivalent to	Summary: A regular exprest compiler (targeting the GE-
a [*] ØX {empty string}X (Ø X) ({empty string} X)	aa* Ø X	machine), using an NFA. Ken Thompson, "Regular expression search algorithm Communications of the ACI June 1968, p 419-422. (http://doi.acm/org/10.114

Table 22: Symbolic differentiation of regular expressions

	Equivalent to	R
$\frac{d}{da}b$	Ø (b ≠ a)	
$\frac{d}{d}a$	{empty string}	
$\frac{da}{d}a^*$	a*	
$\frac{da}{d}a^+$	a*	
$\frac{\frac{d}{da}b}{\frac{d}{da}a}a$ $\frac{\frac{d}{da}a^{*}}{\frac{d}{da}a^{+}}$ $\frac{\frac{d}{da}XY}{\frac{d}{da}XY}$	$\left(\frac{d}{da}X\right)Y$	
$\frac{d}{da}(X Y)$	$\left(\frac{d}{da}X \mid \frac{d}{da}Y\right)$	

relation algebra Variables – properties of an entity – are compared. In CS this is used to specify sets of entities. In bulk, files of fixed-length records of multiple fields, which were selected and merged.

Table 23: Regular to Relation translator

	Relational	ŀ
fields	Column	
files	Relations	
merges	Joins	
pointer	Key	
records	Rows	

resolution

Rule that yields inferred clause

Summary: A description of how neurons behave, a pre-cursor of regular expressions Warren McCulloch and Walter Pitts, "A logical calculus of the ideas imminent in nervous activity," Bulletin of Math. Biophysics 5 (1943) (reprinted in Embodiments of Mind, MIT Press, 1965)

ssion -TSS m," CM 11(6), 145/3633 47.363387)

Janusz Brzozowksi, "Derivatives of gular Expressions" Journal of the sociation of Computing achinery, V11N4 (October 164), 81-494

Summary: Relational DBs are a relabelling of existing practices promoting a pretense. Henry Baker, letter to ACM, Oct 15 1991, http://home.pipeline.com/~hbaker 1/letters/CACM-RelationalDatabases.html

resolution method	 A technique to solves truth-conditional problems in clausal form; typically this is further restricted to conjunctive normal form. Works by testing almost every combination of variable assignment against the rules, keeping only those that do not contradict. Set of support are the primary and supporting axioms; no two primary axioms are resolved against each other. First, prepare the formulae: First negate the theorem to be proved, i.e. make F into ~F Adjoin ~F to the axioms Rewrite the system as: ~F, A1,,An The method involves five steps: Resolve pairs of clauses until a contradiction is reached; this is done by unifying the variables and treating each clause is the theorem to be proved in its own resolution process. The resolution of each clause also provides further unification information 	John A Robinson "A machine oriented logic based on the resolution principle." Journal of the ACM 12(1):23-41 January 1965, Syracuse University	
	 F has been proved if a contraction was found. Otherwise cannot be proved by the axioms. 		
clausal form	See also <i>satisfaction, unification</i> Each term is either a variable, or f(x1,,xn) (where f is a function of n arguments, and		
	x_1x_n are terms). Formula's are of 3 kinds:		
	 Atomic – any predicate the arguments of which are terms. All atomic formulas are formulas 		
	2. If $F \lor G$, $F \land G$, $\sim F$ are all formulas if F,G are formulas,		
	3. All $F(v)$, Exists $F(v)$ are formula, if F is a formula and v is a variable.		
unit preference strategy	Choose clauses that are as short as possible to unify and resolve.		
satisfaction Carnap	The values a formula is true for; if true for the value or range of values. Or, rather, checking that a symbols value is consistent with the constraints.		
	See also resolution method, unification		
Tarski	Every possible value for every variable in the universe, so long as the formula is true.		
boolean	Givens: A set of variables: v ₀ ,v _n A formula using those variables	Platzner, Marco "Boolean Satisfiability" IEEE Computer, IEEE Computer, April 2000,	
	Assign each variable a value $(0,1)$ such that the formula evaluates to $1 - $ or find all such valid assignments. This is an NP complete task.	p60 Summary: based on binary Hyper-Resolution & Equality	
	 Steps: 1. "Decision step selects a variable for the next assignment, either statically with a fixed variable order, or dynamically, depending on information gathered during search. 	Reduction can solve many SAT problems without search. Bacchus "Exploring the Computation Trade of more	
	 "Deduction step infers information from the current partial assignment. Boolean constraint propagation exploits the fact that a partial assignment can imply values for other variables. 	Reasoning and Less Searching″ 2002	
	3. "Diagnosis step analysis [a] contradictions' cause and uses the inferred knowledge to search more efficiently."		
	see also BDD (binary decision diagram), bounded model checking		
parameter search problem	Givens: Initial & boundary conditions A set of constraints Technique to solve the problem		

	Algorithm:			
	Starts by making an initial guess for the parameters			
	Calls the objective function & continues to adjust parameters to minimize the objective function. If the results are not satisfactory, repeats,			
	finds the best parameters with fewest evaluations.			
	Evaluating the objective function. Calls differential equation and compares them with real data.			
	Differential Equation solver. Returns solution of ODE's for current guesses.			
semantic presupposition	Relates two prepositions, Regrets(who, preposition): Bush regrets that he made Noriega Attorney General.			
	see counterfactual, subjunctive conditional			
semantic	Starts out by assuming the variables to be true.	Anthony J Dos Reis, "Theorem		
resolution	Nucleus(+) is a clause that evaluates to be true	Proving using Semantic Resolution" DDJ Apr 88 #137		
	Electron(-) is a clause that evaluates to be false	V13I4 , p50-52		
	Rules:	<i>C Chang, RC Lee,</i> Symbolic Logic and Mechanical Theorem		
	1. Never resolve a nucleus with a nucleus	Proving, 1973 Academic Press, New York NY, ,		
	2. Resolve an electron with a nucleus only if the variable to be eliminated has	PH Winston, Artificial		
	the highest priority among the variables that appear in the electron	Intelligence, 2 nd Ed, 1984, Addison-Wesley, Engelwood		
semantic clash	A single nucleus together with a set of electrons that eliminate all its true literals	Cliffs, NJ		
Semantic Clash	under semantic resolution. Contains exactly on electron for each true literal in its nucleus.			
proof by refutation	what we want to show			
	$P_1 \& \& P_n <-> C$			
	So try			
	$P_1 \& \& P_n \& \sim C <-> []$			
resolution, forms of	$(E_1 v E_2) \& (\sim E_1 v E_3) \le E_2 v E_3$			
	$(E_1 v E_2) \& \sim E_1 <-> E_2$			
	$(E_1 \& (\sim E_1 v E_3) \le E_3$			
	$E_1 \& \sim E_1 \iff []$			
sentence	see closed formula			
sentential function	see formula			
shift-reduce	BNF grammar is converted into a series of nodes like:			
parsing	• A link to the symbol table			
	• Whether or not the item can be a null match			
	• List of next states			
	The list of next states is made when checking the network			
	The symbol table is three parts:			
	• The symbol (character) which is matched			
	• The operation: Shift (which state to go to), reduce (number of items and which action to take), accept, error.			
	 Hint: the extra bit of information for the operation 			
	1			

	Then it builds a TRIE, assigning a number to each node first. The Trie is like the symbol table, except that shifts have state numbers, and there is a column for number. Then all of the symbols for next state are added, given a reduce step. Finally, all of the remaining symbols are added, and given an error state. See also <i>parsing</i>		
signature	A list of the operations available in the abstract algebra.		
	see also algebraic structure		
situation			
Skolemization	A method of eliminating quantifiers, at least in certain circumstances		
sound	whatever the process announces is correct.		
standard model	Intended interpretation		
	See also non-standard models		
states of the world	A set of index numbers. Each is a code for a possible state of the world.		
World	A distinguished index (why?)		
	A relation R on the indices; $R(x,y)$ is either boolean (true or false) or relative probabilities		
	V(x) assigns a valuation to each state-of-the-world index number. Statement A is true or false based on $V(x)(a)$		
strength	Usually the strong form is "All X is Y", while the weak form is "there Exists an X that is Y". While the weak sentence is more likely to be true, logicians aggressively reflect the larger culture disposition towards strength – and what one can do with it. Deductive systems tend to use the strong form; it is biased to assume that the more deductively true conclusions are correct.		
	see also <i>falsifiability</i> .		
strictness	see strength		
subjunctive	Concerned with the future: 'if X should be the case, then so will Y'		
conditional	see also counterfactual, tense		
substitutability	Objects of subtypes should behave like parent type. Stacks and queues are not subtypes of the other. push push pop sequence yields different result (one is FIFO while the other is LIFO). They are in the same family, have similar signatures (sets of key operations), store items for later, different disciplines.		
tableau	Tables of facts and derivation rules.		
	See resolution method, unification		
temporal logic	Temporal logic is, largely, the same as modal logic, except that it focuses more on the analytical needs of computer science. Primarily declarative statements used to validate the behaviour of various systems.		
	see also Büchi automaton, clock, modal logic, tense logic		
Allen's interval algebra	X takes place before Y X meets Y (one starts when the other ends) X overlaps with Y X starts Y (start of X == start of Y, duration of X < = duration of Y) X during Y X finishes Y		

	X is equal to Y	ř		
linear time			ts (there is no concept of duration), ors describing the past and future:	
	 Alw 	rays after (in the future),		
	 Som 	netime after (in the future),		
	 Until 	il		
	 Nex 	t cycle		
	 Alw 	rays in the past		
	 Som 	netime in the past		
	 Since 	ce		
	 Prev 	vious cycle		
		sed to analyze contracts and be be extended with counts or bac	haviour of procedures or algorithms. ck-references.	
	See also Büch	i automaton		
metric		temporal logic with the concepter bound on duration.	ot of duration – each operator allows an	
tense and reference time	time should be		and logician competing senses of what language invariably describes how <i>Latin</i> f the languages under study.	
	Of special con	cern are sentences with phrase	s that must unify their time sequence:	
	W	hen Jack opens the door, Helen	sees the books	
			nds of time: ² time of speech/statement (state in each phrase ($E_1, E_2,$)	
		uttered relative to a reference t	relative to the speaker, when the ime, if the event (or state) has finished,	
		nse is that the event happened and is continuous or still goin	and is finished; imperfect is that the ng on.	
	value the futur necessary to o	re but it is not clear whether it i	y conventional counterfactuals, others s an event that is <i>possible</i> to occur or th handling a narrow region or window <i>ident</i>)	
	See also Clock	k, Temporal logic		
		Time of speech		Table 24: Tense of when the speech act took place
•	ast	S>R		
•	resent Iture	S=R S <r< td=""><td></td><td></td></r<>		
		Time of event / state		Table 25: Tense of when the state or event took place
pe	erfect	E <r< td=""><td></td><td></td></r<>		
	mple	E=R		
	osterior 1perfect	E>R E _{begin} <r, e<sub="">end>R</r,>		
		-begin ···/ -endr ··		

² Riechenbach, Hans 1947 *Elements of Symbolic Logic*

Tense	Example	Time of speech	Time of event	Table 26: Tenses in more detail
simple present	Jack sings	S=R	E=R	
simple past	Jack sang	S>R	E=R	
simple future	Jack will sing	S <r< th=""><th>E=R</th><th></th></r<>	E=R	
present perfect	Jack has sung	S=R	E <r< th=""><th></th></r<>	
past perfect	Jack had sung	S>R	E <r< th=""><th></th></r<>	
future perfect	Jack will have sung	S <r< th=""><th>E<r< th=""><th></th></r<></th></r<>	E <r< th=""><th></th></r<>	
posterior present	Jack is going to sing	S=R	E>R	
posterior past	Jack was going to sing	S>R	E>R	
posterior future	Jack will be going to sing	S <r< th=""><th>E>R</th><th></th></r<>	E>R	

Tense	Example	Time of speech	Time of event	Table 27: Counterfactuals in more detail
counterfactual	If Nixon had won in 1960, we would have	S=R	E <r< th=""><th></th></r<>	
subjunctive	If Jack should sing, I'll like it	S=R	E>R	

operation	Definition	Table 28: Modal operations
after before future (strong) future (weak) happen past (strong) past (weak) present (strong)	The instant A is later than the instant B The instant A is earlier than the instant B It will always be the case that A It shall be the case that A It is the case at the instant A that B It has always been the case that A It has been the case that A It is always the case now that A	
present (weak)	It is the case now that A	

Tense	Intension	Notation	Table 29: Modal operators in more detail (R is a reference
after	A before B	A after B	point)
before	A < B	A before B	
future (strong)	$\forall_{\tau} [\tau A fter R \rightarrow (A, \tau)]$	A always shall happen	
future (weak)	$\exists_{\tau} \left[\tau \ After \ R \to (A, \tau) \right]$	A always shall happen	
happen	(A, τ)		
past (strong)	$\forall_{\tau} [\tau \text{ Before } R \rightarrow (A, \tau)]$	A always has happened	
past (weak)	$\exists_{\tau} \left[\tau \text{ Before } R \to (A, \tau) \right]$	A has happened	
present (strong)	$\forall_{\tau} \left[\tau = R \rightarrow (A, \tau) \right]$		
present (weak)	$\exists_{\tau} \left[\tau = R \to (A, \tau) \right]$	A is happening	

t	er	'n	าร

Negotiation of operational definition of terms

binding	Conversion of expressions and terms into immediately operational or evaluatable forms. Evaluation produces singular output in a specified range.
theory	A system of axioms – atleast in the sense here
formally complete	All well-formed sentences – or their negation – can be proved
formally consistent	A well-formed sentence with a proof does not also have a proof for its opposite.
those things you are referring to	The term 'reference' or 'refers to' has a much narrower and stricter definition in logic. 'The things that you are referring to' is found through a combination of reference as well as

	extension.
	see also extension, reference
time	Time as an index ordering is naïve, but often serviceable for many analysis
	See also temporal logic
transformational - generative grammar	Turing-complete but there is very little linguistic or cognitive significance to machine operations or structure. Much of the work becomes equivalent to 'coding' and 'debugging' issues.
truth	Roughly five theories: correspondence theory, coherence theory, pragmatics, radical- interpretation and verificationist. The verificiationist serves as decidability, and correspondence is often used to determine true or false.
	see also <i>observability</i>
degrees of	Please pretend this doesn't exist! Logic completely fails!
coherence theory	A statement is true iff it coheres with other statements we hold to be true. For example, "All X is Y" might found to be true if X is defined (as special type of Y) using a Genus & Species method of definition. Coherence is subordinate to empirical (verificationist) findings. If "All X is Y" is found to be empirically false, then the Coherence theory (the statements we've accepted, specifically the aforementioned Genus & Species definition).
	see also correspondence, hierarchic definitions, verificationist
correspondence theory	The true statements are those that correspond to facts. Most logical analysis is limited to very narrow and regimented languages; its utility has been challenged on these grounds.
	see also World Model
pragmatics	The statements work out well in the long run
radical interpretation	A statement is interpretable only if the listener has a great deal in common with the speaker, and the listener's language has a great deal in common with the speaker's. Donald Davidson 'Radical Interpretation', Dialectica, 27 (1973), p314-28. Reprinted in
verificationist	A formula is decidable – and of possible significance – only if one knows how to verify it, such as how to observe it. Very few propositions and topics of interest can be observed or otherwise verified in such a manner. Once verified it is known as true or false.
	see also <i>observability</i>
truth theoretic	Focused on the construction if statements
undecidable	There are no contradictions if the assertion is treated as true, and there are no contradictions if the assertion is treated as false. That is, <i>proof by contradiction</i> does not work.
	See also decidability
unification	Unification is a key step in the resolution method, operating like regular expression matching. Unification operates on a <i>substitution</i> table (see the example below) adding further entries as it binds variables. Unification takes this table, a goal clause, and a clause in the table. It tries every combination of variable assignments to make the two clauses equivalent. It steps thru the both clauses in the same way:
	1. If this element is a <i>free</i> variable, <i>bind</i> it to the corresponding element in the other clause. This is done by adding an entry into the substitution table.
	2. If this element is a bound variable, look up its value; if it is a <i>literal</i> , use that. Perform the same on the other side. If the two values are defined, but do not match, abort; unification cannot be performed.
	3. If the element has <i>parameter</i> or sub-ordinate elements, a unification step is performed on those parameter clauses of both main clauses.

This process repeats until no more items are added to the table.

This process effects the inference of variables values (or sets of acceptable values). It can link variables together, showing those that alias each other. It can be modified to remove possibilities from a potential set.

Term Rewriting systems perform a string substitution, replacing each occurrence of a variable with its bound value.

It is easy to understand the substitution table in cases where a variable can be bound to a simple value (e.g. a scalar or a string), a structure whose elements are found. What makes unification powerful is the ability it for a variable to be bound to another variable $-v_4$ (in this context) will inherit whatever v_1 is bound to. A variable can also be bound to a structure, whose elements might not be bound, or might be bound to another variable.

One drawback is that the table can have cycles. An *occurs check* operation can be attempted to catch this occurrence, but the check is very expensive.

see also resolution principle, tableau

Variable	Binding	Table 30: Example substitution table
v ₁	1	
V ₂	"bob"	
V ₃	house(red)	
V ₄	<i>V</i> ₁	
V5	$house(v_2)$	

universal language	Can express logical statements, extra-linguistic statements, and statements about meaning and truth in the language.
universe of discourse	Everything we talk about. Often this is rigidly (and artificially) limited with a closed-world assumption.
unrelated	1. There is no valid combination (or chain) of relations that allow two (or more) items of that kind or type to be related.
	2. If we are talking about two specific items, there are some relationships between the kinds but all deny that the two specific items are related.
valuation function	In theories constructed as a <i>model</i> , one needs to know how names and terms refer to entities and their properties, and how to evaluate sentences. For example Sally's height & mass, or an electrons charge. This is called a 'valuation function' although it is seldom a simple function, and often better understood as a procedure. This valuation assigns value for formula based on those references and how they combine (composition), table of forms and their values (idiomatic).
	see also evaluation procedure
method1	One method is to use the problems declarative specification to specify a grammar and a family of automatons. The first automaton is special in that the sentences it recognizes (accepts) are also solutions to the problem. The other, optional, automatons generate fragments of the language that may be present in the acceptable sentence(s). Despite the unusual pretense of the solution as a sentence in an imaginary language, this technique can be very efficient.
	see also Chomsky hierarchy, language fragment
vague	Quantitative ambiguity (e.g. insufficiently precise term), task-related ambiguity (needs a plausible principle to resolve the question)
variable bound	Value of the variable is controlled by a quantifier, is a parameter or is a constant

a version without memory explosion is at http://alchemy.cs.washington .edu
e algebra's language. ch more complex issue
problem has been on.
out the world. Most to incorporate